The BayesSUR model has been extended to include mandatory variables by assigning Gaussian priors as random effects rather than spike-and-slab priors, named as SSUR-MRF with random effects in Zhao et al. 2023. The R code for the simulated data and real data analyses in Zhao et al. 2023 can be found at the GitHub repository BayesSUR-RE.
Here, we show some small examples to run the BayesSUR mdoel with random effects. To get started, load the package with
We design a network as the following figure (a) to construct a complex structure between 20 response variables and 300 predictors. It assumes that the responses are divided into six groups, and the first 120 predictors are divided into nine groups.
Load the simulation function sim.ssur()
as follows.
library("gRbase")
sim.ssur <- function(n, s, p, t0 = 0, seed = 123, mv = TRUE,
t.df = Inf, random.intercept = 0, intercept = TRUE) {
# set seed to fix coefficients
set.seed(7193)
sd_b <- 1
mu_b <- 1
b <- matrix(rnorm((p + ifelse(t0 == 0, 1, 0)) * s, mu_b, sd_b), p + ifelse(t0 == 0, 1, 0), s)
# design groups and pathways of Gamma matrix
gamma <- matrix(FALSE, p + ifelse(t0 == 0, 1, 0), s)
if (t0 == 0) gamma[1, ] <- TRUE
gamma[2:6 - ifelse(t0 == 0, 0, 1), 1:5] <- TRUE
gamma[11:21 - ifelse(t0 == 0, 0, 1), 6:12] <- TRUE
gamma[31:51 - ifelse(t0 == 0, 0, 1), 1:5] <- TRUE
gamma[31:51 - ifelse(t0 == 0, 0, 1), 13:15] <- TRUE
gamma[52:61 - ifelse(t0 == 0, 0, 1), 1:12] <- TRUE
gamma[71:91 - ifelse(t0 == 0, 0, 1), 6:15] <- TRUE
gamma[111:121 - ifelse(t0 == 0, 0, 1), 1:15] <- TRUE
gamma[122 - ifelse(t0 == 0, 0, 1), 16:18] <- TRUE
gamma[123 - ifelse(t0 == 0, 0, 1), 19] <- TRUE
gamma[124 - ifelse(t0 == 0, 0, 1), 20] <- TRUE
G_kron <- matrix(0, s * p, s * p)
G_m <- bdiag(matrix(1, ncol = 5, nrow = 5),
matrix(1, ncol = 7, nrow = 7),
matrix(1, ncol = 8, nrow = 8))
G_p <- bdiag(matrix(1, ncol = 5, nrow = 5), diag(3),
matrix(1, ncol = 11, nrow = 11), diag(9),
matrix(1, ncol = 21, nrow = 21),
matrix(1, ncol = 10, nrow = 10), diag(9),
matrix(1, ncol = 21, nrow = 21), diag(19),
matrix(1, ncol = 11, nrow = 11), diag(181))
G_kron <- kronecker(G_m, G_p)
combn11 <- combn(rep((1:5 - 1) * p, each = length(1:5)) +
rep(1:5, times = length(1:5)), 2)
combn12 <- combn(rep((1:5 - 1) * p, each = length(30:60)) +
rep(30:60, times = length(1:5)), 2)
combn13 <- combn(rep((1:5 - 1) * p, each = length(110:120)) +
rep(110:120, times = length(1:5)), 2)
combn21 <- combn(rep((6:12 - 1) * p, each = length(10:20)) +
rep(10:20, times = length(6:12)), 2)
combn22 <- combn(rep((6:12 - 1) * p, each = length(51:60)) +
rep(51:60, times = length(6:12)), 2)
combn23 <- combn(rep((6:12 - 1) * p, each = length(70:90)) +
rep(70:90, times = length(6:12)), 2)
combn24 <- combn(rep((6:12 - 1) * p, each = length(110:120)) +
rep(110:120, times = length(6:12)), 2)
combn31 <- combn(rep((13:15 - 1) * p, each = length(30:50)) +
rep(30:50, times = length(13:15)), 2)
combn32 <- combn(rep((13:15 - 1) * p, each = length(70:90)) +
rep(70:90, times = length(13:15)), 2)
combn33 <- combn(rep((13:15 - 1) * p, each = length(110:120)) +
rep(110:120, times = length(13:15)), 2)
combn4 <- combn(rep((16:18 - 1) * p, each = length(121)) +
rep(121, times = length(16:18)), 2)
combn5 <- matrix(rep((19 - 1) * p, each = length(122)) +
rep(122, times = length(19)), nrow = 1, ncol = 2)
combn6 <- matrix(rep((20 - 1) * p, each = length(123)) +
rep(123, times = length(20)), nrow = 1, ncol = 2)
combnAll <- rbind(t(combn11), t(combn12), t(combn13),
t(combn21), t(combn22), t(combn23), t(combn24),
t(combn31), t(combn32), t(combn33),
t(combn4), combn5, combn6)
set.seed(seed + 7284)
sd_x <- 1
x <- matrix(rnorm(n * p, 0, sd_x), n, p)
if (t0 == 0 & intercept) x <- cbind(rep(1, n), x)
if (!intercept) {
gamma <- gamma[-1, ]
b <- b[-1, ]
}
xb <- matrix(NA, n, s)
if (mv) {
for (i in 1:s) {
if (sum(gamma[, i]) >= 1) {
if (sum(gamma[, i]) == 1) {
xb[, i] <- x[, gamma[, i]] * b[gamma[, i], i]
} else {
xb[, i] <- x[, gamma[, i]] %*% b[gamma[, i], i]
}
} else {
xb[, i] <- sapply(1:s, function(i) rep(1, n) * b[1, i])
}
}
} else {
if (sum(gamma) >= 1) {
xb <- x[, gamma] %*% b[gamma, ]
} else {
xb <- sapply(1:s, function(i) rep(1, n) * b[1, i])
}
}
corr_param <- 0.9
M <- matrix(corr_param, s, s)
diag(M) <- rep(1, s)
## wanna make it decomposable
Prime <- list(c(1:(s * .4), (s * .8):s),
c((s * .4):(s * .6)),
c((s * .65):(s * .75)),
c((s * .8):s))
G <- matrix(0, s, s)
for (i in 1:length(Prime)) {
G[Prime[[i]], Prime[[i]]] <- 1
}
# check
dimnames(G) <- list(1:s, 1:s)
length(gRbase::mcsMAT(G - diag(s))) > 0
var <- solve(BDgraph::rgwish(n = 1, adj = G, b = 3, D = M))
# change seeds to add randomness on error
set.seed(seed + 8493)
sd_err <- 0.5
if (is.infinite(t.df)) {
err <- matrix(rnorm(n * s, 0, sd_err), n, s) %*% chol(as.matrix(var))
} else {
err <- matrix(rt(n * s, t.df), n, s) %*% chol(as.matrix(var))
}
if (t0 == 0) {
b.re <- NA
z <- NA
y <- xb + err
if (random.intercept != 0) {
y <- y + matrix(rnorm(n * s, 0, sqrt(random.intercept)), n, s)
}
z <- sample(1:4, n, replace = T, prob = rep(1 / 4, 4))
return(list(y = y, x = x, b = b, gamma = gamma, z = model.matrix(~ factor(z) + 0)[, ],
b.re = b.re, Gy = G, mrfG = combnAll))
} else {
# add random effects
z <- t(rmultinom(n, size = 1, prob = c(.1, .2, .3, .4)))
z <- sample(1:t0, n, replace = T, prob = rep(1 / t0, t0))
set.seed(1683)
b.re <- rnorm(t0, 0, 2)
y <- matrix(b.re[z], nrow = n, ncol = s) + xb + err
return(list(
y = y, x = x, b = b, gamma = gamma, z = model.matrix(~ factor(z) + 0)[, ],
b.re = b.re, Gy = G, mrfG = combnAll
))
}
}
To simulate data with sample size n = 250, responsible variables s = 20 and covariates p = 300, we can specify the
corresponding parameters in the function sim.ssur()
as
follows.
To simulate data from 4 individual
groups with group indicator variables following the defaul multinomial
distribution multinomial(0.1, 0.2, 0.3, 0.4),
we can simply add the argument t0 = 4
in the function
sim.ssur()
as follows.
According to the guideline of prior specification in Zhao et al. 2023, we
first set the following parameters hyperpar
and then
running the BayesSUR model with random effects via
betaPrior = "reGroup"
(default
betaPrior = "independent"
with spike-and-slab priors for
all coefficients). For illustration, we run a short
MCMC with nIter = 300
and
burnin = 100
. Note that here the graph used for the Markov
random field prior is the true graph from the returned object of the
simulation sim2$mrfG
.
hyperpar <- list(mrf_d = -2, mrf_e = 1.6, a_w0 = 100, b_w0 = 500, a_w = 15, b_w = 60)
set.seed(1038)
fit2 <- BayesSUR(
data = cbind(sim2$y, sim2$z, sim2$x),
Y = 1:s,
X_0 = s + 1:t0,
X = s + t0 + 1:p,
outFilePath = "sim2_mrf_re",
hyperpar = hyperpar,
gammaInit = "0",
betaPrior = "reGroup",
nIter = 300, burnin = 100,
covariancePrior = "HIW",
standardize = F,
standardize.response = F,
gammaPrior = "MRF",
mrfG = sim2$mrfG,
output_CPO = T
)
## BayesSUR -- Bayesian Seemingly Unrelated Regression Modelling
## Reading input files ... ... successfull!
## Clearing and initialising output files
## Initialising the (SUR) MCMC Chain ... ... DONE!
## Drafting the output files with the start of the chain ... DONE!
##
## Starting 2 (parallel) chain(s) for 300 iterations:
## Temperature ladder updated, new temperature ratio : 1.1
## MCMC ends. --- Saving results and exiting
## Saved to : sim2_mrf_re/data_SSUR_****_out.txt
## Final w0 : 4.9971
## Final w : 2.29497
## Final tau : 0.293487 w/ proposal variance: 1.2229
## Final eta : 0.0471505
## -- Average Omega : 0
## Final temperature ratio : 1.1
##
## DONE, exiting!
Check some summarized information of the results:
## Call:
## BayesSUR(data = cbind(sim2$y, sim2$z, sim2$x), ...)
##
## CPOs:
## Min. 1st Qu. Median 3rd Qu. Max.
## 0.0001896996 0.0242732651 0.0348570615 0.0465600279 0.1312571329
##
## Number of selected predictors (mPIP > 0.5): 19 of 20x300
##
## Top 10 predictors on average mPIP across all responses:
## X.74 X.69 X.77 X.82 X.114 X.116 X.122 X.157 X.265
## 0.081840 0.049500 0.049500 0.049500 0.049500 0.049500 0.049500 0.049500 0.049500
## X.16
## 0.047015
##
## Top 10 responses on average mPIP across all predictors:
## X.8 X.10 X.5 X.19 X.11 X.9 X.6
## 0.012703000 0.010049000 0.007943333 0.006600000 0.005522333 0.004029667 0.003001667
## X.12 X.2 X.4
## 0.002852333 0.002769667 0.002404667
##
## Expected log pointwise predictive density (elpd) estimates:
## elpd.LOO = -16803.49, elpd.WAIC = -16799.94
##
## MCMC specification:
## iterations = 300, burn-in = 100, chains = 2
## gamma local move sampler: bandit
## gamma initialisation: 0
##
## Model specification:
## covariance prior: HIW
## gamma prior: MRF
##
## Hyper-parameters:
## a_w b_w nu a_tau b_tau a_eta b_eta mrf_d mrf_e a_w0 b_w0
## 15.0 60.0 22.0 0.1 10.0 0.1 1.0 -2.0 1.6 100.0 500.0
Show the estimates of regression coefficients, variable selection indicators and residual graph
# show estimates
plot(fit2, estimator=c("beta","gamma","Gy"), type="heatmap", name.predictors = "auto")
Compute the model performance with respect to variable selection
# compute accuracy, sensitivity, specificity of variable selection
gamma <- getEstimator(fit2)
(accuracy <- sum(data.matrix(gamma > 0.5) == sim2$gamma) / prod(dim(gamma)))
## [1] 0.8725
## [1] 0.01558442
## [1] 0.9986616
Compute the model performance with respect to response prediction
# compute RMSE and RMSPE for prediction performance
beta <- getEstimator(fit2, estimator = "beta", Pmax = .5, beta.type = "conditional")
(RMSE <- sqrt(sum((sim2$y - cbind(sim2$z, sim2$x) %*% beta)^2) / prod(dim(sim2$y))))
## [1] 8.723454
(RMSPE <- sqrt(sum((sim2.val$y - cbind(sim2.val$z, sim2.val$x) %*% beta)^2) / prod(dim(sim2.val$y))))
## [1] 8.859939
Compute the model performance with respect to coefficient bias
# compute bias of beta estimates
b <- sim2$b
b[sim2$gamma == 0] <- 0
(beta.l2 <- sqrt(sum((beta[-c(1:4), ] - b)^2) / prod(dim(b))))
## [1] 0.5039502
Compute the model performance with respect to covariance selection
g.re <- getEstimator(fit2, estimator = "Gy")
(g.accuracy <- sum((g.re > 0.5) == sim2$Gy) / prod(dim(g.re)))
## [1] 0.585
## [1] 0.2475248
## [1] 0.9292929
Zhi Zhao, Marco Banterle, Alex Lewin, Manuela Zucknick (2023). Multivariate Bayesian structured variable selection for pharmacogenomic studies. Journal of the Royal Statistical Society: Series C (Applied Statistics), qlad102. DOI: 10.1093/jrsssc/qlad102.